Industrial Internet: Big Data and Analytics Driving Big Outcomes

The torrent of data generated from machines, networks, devices, and data centers in industry verticals provide challenges and opportunities. The challenge is to make this machine data meaningful and actionable to deliver on opportunities around operational efficiencies. On March 15, Beena Ammanath, Vice President of Data Science at General Electric, joined datascience@berkeley to present “Industrial Internet: Big Data and Analytics Driving Big Outcomes.” Ammanath shared real-world case studies demonstrating tangible operational benefits by tightly integrating machines, networked sensors, industrial-strength data, and software to enable intelligent insights and affect measurable outcomes. Here, we provide a recap of her presentation and key takeaways about how the Industrial Internet is making the most of big data to drive big outcomes. 

Synthetic Capstone Spotlight: AidSight

The Master of Information and Data Science (MIDS) program at the UC Berkeley School of Information (I School) culminates with a synthetic capstone project. One capstone team consisting of MIDS students Nicholas Hamlin, Natarajan Krishnaswami, Glenn Dunmire, and Minhchau Dang came together to create AidSight. AidSight is a platform that uses modern data science techniques to make the 600,000 aid activities reported to the International Aid Transparency Initiative (IATI) understandable and digestible at a glance. The AidSight team took some time to answer a few questions we had about the impact their platform is having on the global aid and funding community.

MIDS Fall 2016 Capstone Presentations

On December 19th, the fall 2016 datascience@berkeley graduates presented their capstone projects in a public webinar. For the capstone project, the graduates were tasked to solve a real-world situation or problem utilizing their data science skills in communication, problem-solving, influence, and management to provide a fully realized solution.

Performant Deep Learning at Scale with Apache Spark & Apache SystemML

Machine learning continues to deepen its impact with new platforms that enable more efficient and accurate analysis of big data. One such platform is Apache SystemML, which allows for large-scale learning on the underlying Apache Spark platform, while maintaining the simple, modular, high-level mathematics at the core of the field. In a recent webinar, Mike Dusenberry, an engineer at the IBM Spark Technology Center presented the work he and his team are doing to create a deep learning library for SystemML and solve for performant deep learning at scale. Here, we’ll provide the key points that Mike discussed, as well as additional resources for further exploration.

MIDS Summer 2016 Capstone Presentations

On August 25, the summer 2016 datascience@berkeley graduates presented their capstone projects in a public webinar. For the capstone project, the graduates were tasked to solve a real-world situation or problem utilizing their data science skills in communication, problem-solving, influence, and management to provide a fully realized solution.

MIDS Program: 2016 Status Report

When we launched the Master of Information and Data Science (MIDS) program in January of 2014, we knew that we were taking a calculated risk. The data science field was gaining momentum, but there weren’t many established professional data science master’s degree programs in existence. This presented the I School with the opportunity to be one of the first movers in the space and, consequently, carve out a unique role in shaping the future of data science education.